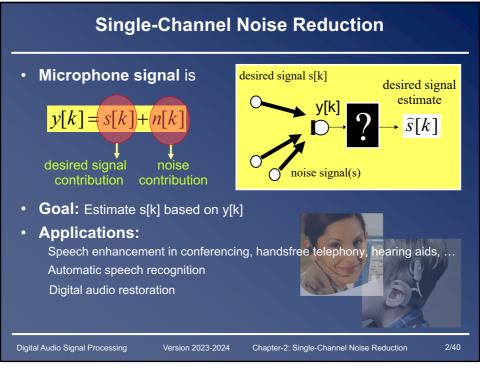
Digital Audio Signal Processing

DASP

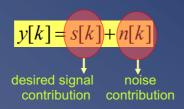
Chapter-2
Single-Channel Noise Reduction

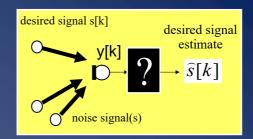
Marc Moonen & <u>Arnout Roebben</u>
Dept. E.E./ESAT-STADIUS, KU Leuven
marc.moonen@kuleuven.be
homes.esat.kuleuven.be/~moonen/

1



Single-Channel Noise Reduction





- Will consider methods that do not rely on a priori information (e.g. expected noise spectrum)
- Will consider <u>speech applications</u>: s[k] = speech signal
 Speech is on/off signal, where speech pauzes can be used to estimate noise spectrum

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

3/40

3

Overview

- Frequency Domain Methods / Spectral Subtraction Methods
 - Spectral subtraction basics
 - Gain functions
 - Realization
 - Musical noise
 - Signal model based spectral subtraction
- Time Domain Methods
 - Kalman Filter Based Noise Reduction
 - Subspace Methods

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

4/40

Spectral Subtraction: Basics

$$y[k] = s[k] + n[k]$$

Signal segmented into 'frames' (e.g. 10..20msec), for each frame a frequency domain representation (=spectrum) is

$$Y_i(\omega) = S_i(\omega) + N_i(\omega)$$
 (i-th frame)

However, as speech signal is an on/off signal, some frames have speech+noise, i.e.

$$Y_i(\omega) = S_i(\omega) + N_i(\omega)$$
 frame $\in \{\text{`speech + noise' frames}\}\$

some frames have noise only, i.e.

$$Y_i(\omega) = 0 + N_i(\omega)$$
 frame_i \in {`noise - only' frames}

A speech detection algorithm (a.k.a. 'voice activity detection', VAD) is needed to distinguish between these 2 types of frames (based on energy/dynamic range/statistical properties,...)

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

5

Spectral Subtraction: Basics

 $\left| \mu_{\text{noise}, i}(\omega) = E\{ \left| N_i(\omega) \right| \} \right|, \quad \sigma_{\text{noise}, i}^2(\omega) = E\{ \left| N_i(\omega) \right|^2 \}$ Definition:

i.e. noise spectrum expected magnitude & power (frame i)

Assumption: $\mu_{\text{noise}}(\omega) = \mu_{\text{noise},i}(\omega)$, $\sigma_{\text{noise}}^2(\omega) = \sigma_{\text{noise},i}^2(\omega)$

i.e. noise is (short-term) stationary (+ ergodicity)

Hence $\mu_{noise}(\omega)$, $\sigma_{noise}^2(\omega)$ can be estimated by averaging over noise-only frames

 $\hat{\sigma}_{\text{noise}}^{2}(\omega) = \frac{1}{\tilde{N}} \sum_{\text{noise only frames}} \left| Y_{i}(\omega) \right|^{2}$ $\tilde{N} = \# \text{ noise-only frames}$

For each frame estimate clean speech spectrum $Si(\omega)$ by using noisy speech spectrum Yi(w)

together with $\mu^{\wedge}_{noise}(\omega)$, $\sigma^{\wedge}_{noise}(\omega)$ $\hat{S}_{i}(\omega) = G_{i}(\omega)Y_{i}(\omega)$

based on 'gain function'

 $G_i(\omega) = f(Y_i(\omega), \hat{\mu}_{noise}(\omega), \hat{\sigma}_{noise}^2)$

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

Spectral Subtraction: Basics

$$\hat{S}_i(\omega) = G_i(\omega)Y_i(\omega)$$

- PS: Gain will be real-valued scalar between 0 and 1
 - Only the magnitude of $Y_i(\omega)$ is changed, noisy phase is unchanged
 - Techniques for estimating clean phase also exist (details omitted)
- **PS**: Applying a gain function as $\hat{S}_i(\omega) = G_i(\omega)Y_i(\omega)$
 - can improve signal-to-noise ratio (SNR) of the signal as a whole (i.e. in the time domain) but does not improve the SNR for a particular radial frequency (i.e. speech and noise are equally scaled)
 - hence impact on speech intelligibility is found to be minimal (or non-existing) but 'listening comfort' is said to be improved

For true SNR & speech intelligibility improvement, see multi-channel noise reduction (Chapter 3-4)

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

7/40

7

Spectral Subtraction: Gain Functions

Examples

• Magnitude Subtraction:

$$G_i(\omega) = \left[1 - \frac{\hat{\mu}_{\text{noise}}(\omega)}{|Y_i(\omega)|}\right]$$

• Spectral Subtraction:

$$G_i(\omega) = \sqrt{1 - \rho \cdot \frac{\hat{\sigma}_{\text{noise}}^2(\omega)}{\left| Y_i(\omega) \right|^2}}$$

• Wiener Estimation:

$$G_{i}(\omega) = \left[1 - \frac{\hat{\sigma}_{\text{noise}}^{2}(\omega)}{|Y_{i}(\omega)|^{2}}\right]$$

Maximum Likelihood:

$$G_i(\omega) = \frac{1}{2} \left[1 + \sqrt{1 - \frac{\hat{\sigma}_{\text{noise}}^2(\omega)}{\left| Y_i(\omega) \right|^2}} \right]$$

Ephraim-Malah:

See next slide

(=most frequently used in practice)

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

Spectral ortraction: Gain Functions

Example 1: Ephraim-Malah Suppression Rule (EMSR)

$$G_{i}(\omega) = \frac{\sqrt{\pi}}{2} \sqrt{\left(\frac{1}{\text{SNR}_{\text{post}}}\right) \left(\frac{\text{SNR}_{\text{prio}}}{1 + \text{SNR}_{\text{prio}}}\right)} M \left[\text{SNR}_{\text{post}} \left(\frac{\text{SNR}_{\text{prio}}}{1 + \text{SNR}_{\text{prio}}}\right)\right]$$

with:

$$M[\theta] = e^{-\frac{1}{2}} \left[(1 + \theta)I_0 + \theta I_1 + \frac{\theta}{2} \right]$$

$$SNR_{post}(\omega) = \frac{\left| Y_i(\omega) \right|^2}{\hat{\sigma}_{noise}^2(\omega)} \text{ modified Bessel functions}$$

$$SNR_{prio}(\omega) = (1 - \alpha) \max(SNR_{post} - 1, 0) + \alpha \frac{\left| G_{i-1}(\omega)Y_{i-1}(\omega) \right|^2}{\hat{\sigma}_{noise}^2(\omega)}$$

- This corresponds to a <u>MMSE</u> (*) estimation of the 'speech spectral amplitude' $|Si(\omega)|$ based on observation $Yi(\omega)$ (estimate equal to **E**{ $|Si(\omega)|$ | $Yi(\omega)$ }) assuming Gaussian a priori distributions for $Si(\omega)$ and $Ni(\omega)$ [Ephraim & Malah 1984]
- Similar formula for MMSE 'log-spectral amplitude' estimation [Ephraim & Malah 1985]

(*) minimum mean squared error

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

9/40

9

Spectral Subtraction: Gain Functions

- · Example 2: Magnitude Subtraction
 - Signal model:

$$Y_i(\omega) = S_i(\omega) + N_i(\omega)$$

= $|Y_i(\omega)|e^{i\theta_{y,i}(\omega)}$

- Estimation of clean speech spectrum:

$$\hat{S}_{i}(\omega) = \left[\left| Y_{i}(\omega) \right| - \hat{\mu}_{\text{noise}}(\omega) \right] e^{j\theta_{y,i}(\omega)}$$

$$= \left[1 - \frac{\hat{\mu}_{\text{noise}}(\omega)}{\left| Y_{i}(\omega) \right|} \right] Y_{i}(\omega)$$

$$= \left[\frac{1 - \frac{\hat{\mu}_{\text{noise}}(\omega)}{\left| Y_{i}(\omega) \right|} \right] Y_{i}(\omega)$$

='instantaneous estimate' (see also p.15)

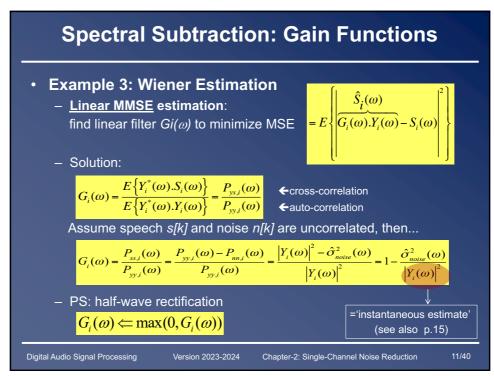
PS: half-wave rectification

$$G_i(\omega) \Leftarrow \max(0, G_i(\omega))$$

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction



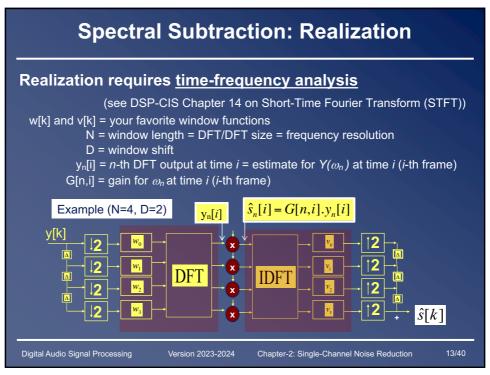
Overview

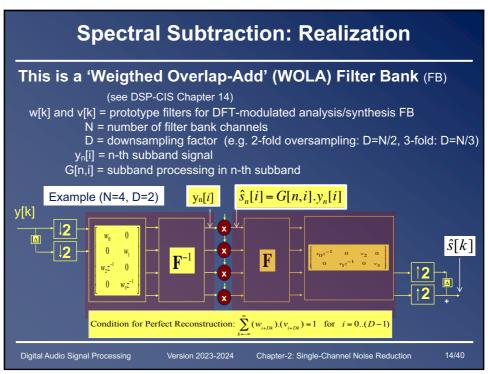
- Frequency Domain Methods / Spectral Subtraction Methods
 - Spectral subtraction basics
 - Gain functions
 - Realization
 - Musical noise
 - Signal model based spectral subtraction
- Time Domain Methods
 - Kalman Filter Based Noise Reduction
 - Subspace Methods

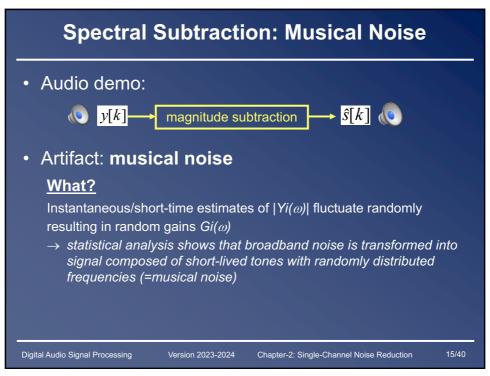
Digital Audio Signal Processing

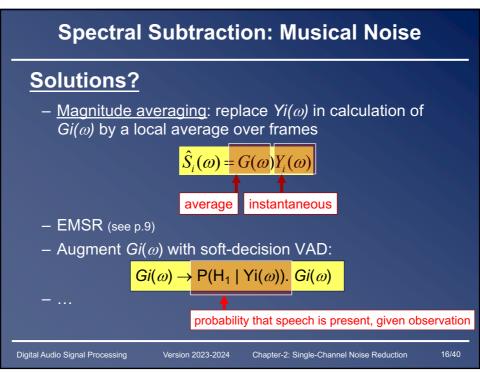
Version 2023-2024

Chapter-2: Single-Channel Noise Reduction









Overview

- Frequency Domain Methods / Spectral Subtraction Methods
 - Spectral subtraction basics
 - Gain functions
 - Realization
 - Musical noise
 - Signal model based spectral subtraction
- Time Domain Methods
 - Kalman Filter Based Noise Reduction
 - Subspace Methods

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

17/40

17

Signal model based spectral subtraction

• Basic:

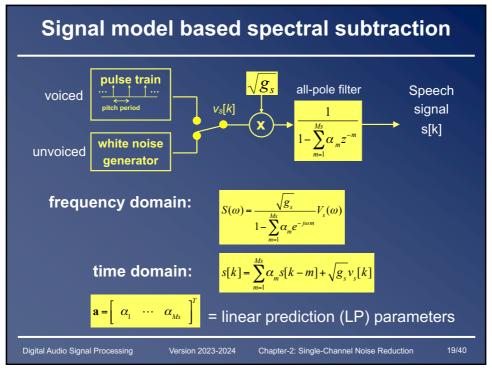
Spectral subtraction with improved spectra estimation based on parametric speech signal model

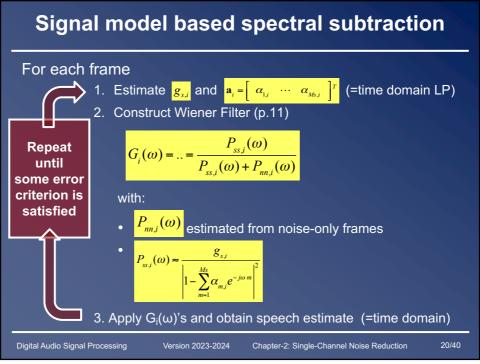
- <u>Procedure</u>:
 - 1. Estimate (initialize) parameters of speech model from noisy signal
 - 2. Using estimated parameters, perform noise reduction (e.g. Wiener estimation, p.11)
 - 3. Re-estimate parameters of speech model <u>from the speech signal</u> <u>estimate</u>
 - 4. Iterate 2 & 3

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction





Overview

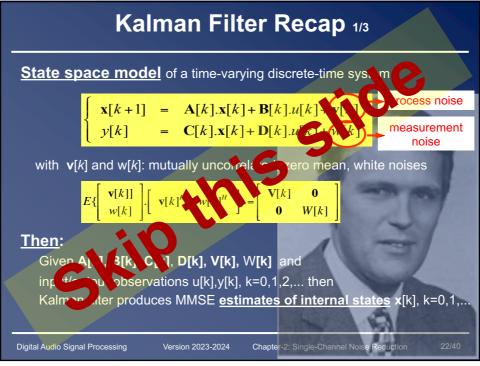
- Frequency Domain Methods / Spectral Subtraction Methods
 - Spectral subtraction basics
 - Gain functions
 - Realization
 - Musical noise
 - Signal model based spectral subtraction
- Time Domain Methods
 - Kalman Filter Based Noise Reduction
 - Subspace Methods

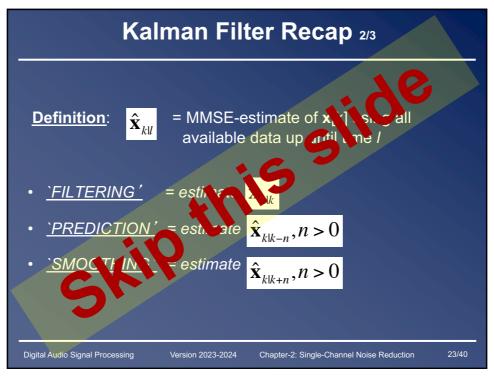
Digital Audio Signal Processing

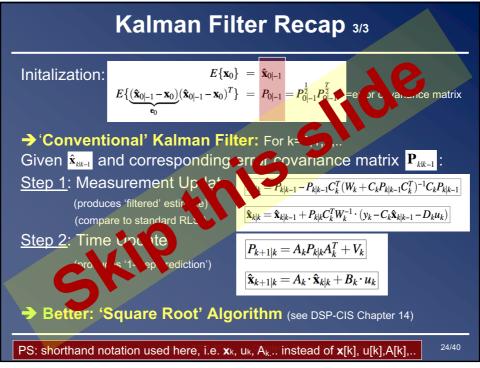
Version 2023-2024

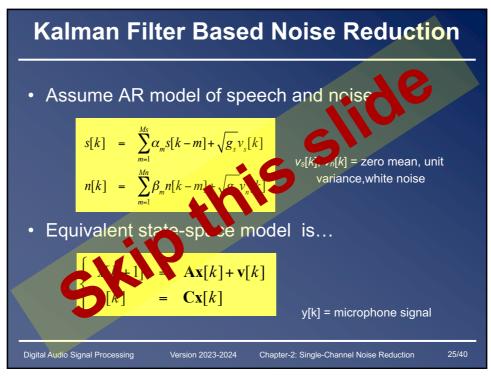
Chapter-2: Single-Channel Noise Reduction

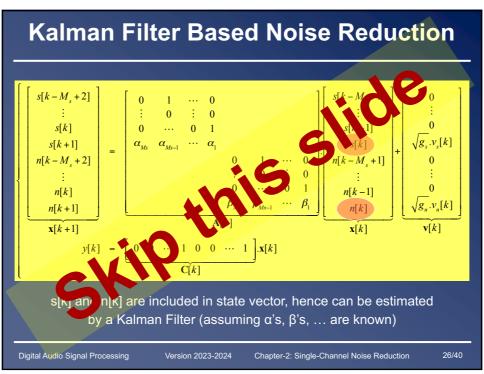
21/40

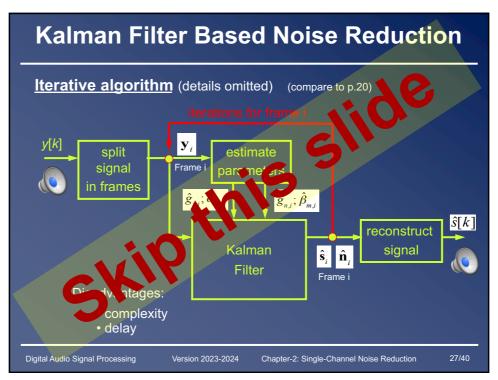


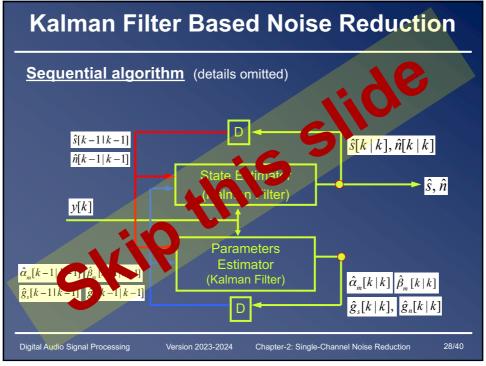












Overview

- Frequency Domain Methods / Spectral Subtraction Methods
 - Spectral subtraction basics
 - Gain functions
 - Realization
 - Musical noise
 - Signal model based spectral subtraction
- Time Domain Methods
 - Kalman Filter Based Noise Reduction
 - Subspace Methods

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

29/40

29

Subspace Methods

- Signal model: y[k] = s[k] + n[k], k = 1,...,N
- Construct Toeplitz matrix (LxM, L=N-M+1):

```
\mathbf{Y} = \begin{bmatrix} y[M] & y[M-1] & y[M-2] & \cdots & y[1] \\ y[M+1] & y[M] & y[M-1] & \cdots & y[2] \\ y[M+2] & y[M+1] & y[M] & \cdots & y[3] \\ y[M+3] & y[M+2] & y[M+1] & \cdots & y[4] \\ \vdots & \vdots & \vdots & & \vdots \\ y[N-2] & y[N-3] & y[N-4] & \cdots & y[N-M-1] \\ y[N] & y[N-1] & y[N-2] & \cdots & y[N-M] \\ y[N] & y[N-1] & y[N-2] & \cdots & y[N-M+1] \end{bmatrix}
```

Hence: Y

Y = S + N

(with S and N similarly constructed)

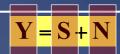
Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

30/40

Subspace Methods



Assumptions: Consider L>>M ('tall thin' matrices)

- Clean signal matrix **S** is rank deficient (e.g. 'sum of sinusoids' speech model)
 rank(**S**) = K < M
- Clean signal matrix S is orthogonal (≈uncorrelated) to noise
 (1/L) . S^TN = 0
- White noise (see p.38 for coloured noise) (1/L) . $\mathbf{N}^T \mathbf{N} = \sigma^2_{\text{noise}} . \mathbf{I}_{M}$

Assumptions better satisfied as L→∞

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

31/40

31

Subspace Methods

Tool: Singular value decomposition (SVD) of Y

$$\mathbf{Y} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^T = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix}$$

U is LxM orthogonal matrix U^T.U=I_{MxM}
Columns of U are 'left singular vectors'

V is MxM orthogonal matrix V^T.V=I_{MxM}
Columns of V are 'right singular vectors'

 Σ is MxM diagonal matrix Diagonal elements are 'singular values' $\sigma_{\!i}$

 Σ_1 has K largest σ_i corresponding to 'signal+noise subspace' Σ_2 has M-K smallest $\sigma_l \approx \sigma_{\text{noise}}$ corresponding to 'noise subspace'

Digital Audio Signal Processing Ve

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

32/40

Example

M=21

Subspace Methods

$$\mathbf{Y} = \mathbf{S} + \mathbf{N}$$

$$\mathbf{Y} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \begin{bmatrix} \mathbf{U}_{1} & \mathbf{U}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{T} \\ \mathbf{V}_{2}^{T} \end{bmatrix}$$

Procedure

- Step-1: From SVD of Y, find estimate § of S
 - Least squares estimate
 - Minimum variance estimate
- Step-2: Construct $\hat{s}[k], k=1,...,N$ from \hat{S}

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

33/40

33

Subspace Methods

- Step-1 (v1.0) : Least squares estimator Y_{LS}
 - Goal: approximate \mathbf{Y} by a matrix \mathbf{Y}_{LS} of rank K

$$\min_{\text{rank}(\mathbf{Y}_{\text{LS}}=K)} \|\mathbf{Y} - \mathbf{Y}_{\text{LS}}\|_{\text{F}}^{2}$$

Solution is obtained by setting M-K smallest singular values to zero ('truncation')

$$\hat{\mathbf{S}} = \mathbf{Y}_{LS} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U}_1 \boldsymbol{\Sigma}_1 \mathbf{V}_1$$

Problem: proper determination of order K

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

- Step-1 (v2.0): Minimum variance estimator Y_{MV}
 - Find a matrix **T** that minimizes

 $\frac{\min_{\mathbf{T}} \|\mathbf{Y}\mathbf{T} - \mathbf{S}\|_{F}^{2}}{\mathbf{T} - \mathbf{S}}$ (assume S is given, then i-th column of T is optimal linear filter for i-th column of S)

- Then:

$$\hat{\mathbf{S}} = \mathbf{Y}_{MV} = \mathbf{Y} \cdot (\mathbf{Y}^{T}\mathbf{Y})^{-1}\mathbf{Y}^{T}\mathbf{S}$$

$$= \mathbf{Y} \cdot (\mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{T})^{-1} \cdot (\mathbf{Y}^{T}\mathbf{Y} - \mathbf{N}^{T}\mathbf{N})$$

$$= \mathbf{Y} \cdot (\mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{T})^{-1} \cdot (\mathbf{Y}^{T}\mathbf{Y} - \mathbf{N}^{T}\mathbf{N})$$

$$= \mathbf{Y} \cdot \mathbf{V} \cdot diag\{\frac{\sigma_{i}^{2} - \sigma_{\text{noise}}^{2}}{\sigma_{i}^{2}}\} \cdot \mathbf{V}^{T}$$

$$= \mathbf{U} \cdot diag\{\frac{\sigma_{i}^{2} - \sigma_{\text{noise}}^{2}}{\sigma_{i}}\} \cdot \mathbf{V}^{T}$$

$$(*)$$

PS: rank-deficiency condition not needed here

 $\mbox{\bf PS:} \sigma^2_{\mbox{\scriptsize noise}}$ has to be known (e.g. estimated during noise-only)

Digital Audio Signal Processing

ersion 2023-2024/

Chapter-2: Single-Channel Noise Reduction

35/40

35

Subspace Methods

· Step-2: Signal Reconstruction

Goal: Given $\hat{\mathbf{S}}$, construct $\hat{s}[k], k = 1,...,N$

Problem: Ŝ does not have Toeplitz structure

Solution:

Restore Toeplitz structure by arithmetically averaging every diagonal of the matrix

Hence:

$$\hat{s}[i] = \frac{1}{\beta - \alpha + 1} \sum_{k=0}^{\beta} \hat{\mathbf{S}}[k + i - M, k]$$

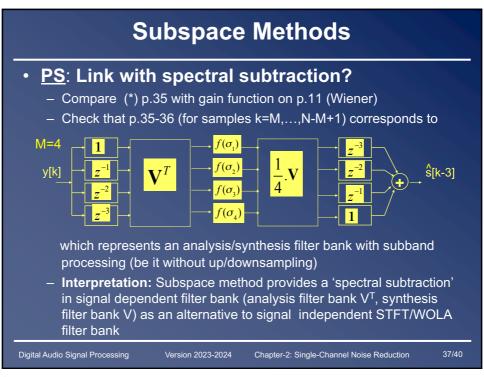
 $\alpha = \max(1, M + 1 - i)$ (summation starts in column α)

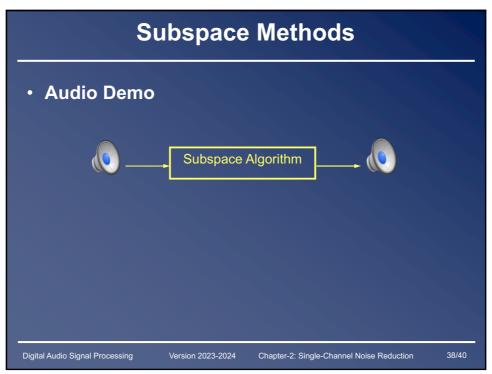
 $\beta = \min(M, M + L - i)$ (summation ends in column β)

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction





Subspace Methods

- PS: What if coloured noise (1/L) $.N^T N \neq \sigma^2_{noise} I_M$?
 - Estimate N^TN during noise-only periods
 - Similar procedure, now including 'pre-whitening' of Toeplitz matrix prior to SVD and 'de-whitening' step after estimation of
 - Computational scheme can use 'generalized SVD' instead of SVD (with 'built-in' pre-/de-whitening)
 - Easy, but details omitted...

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction

39/40

39

Conclusion

- Many single-channel noise reduction procedures available
- Performance never spectacular
- Seek performance improvement with multi-channel processing (=Chapter 3-4)

PS: Recently strong shift towards <u>machine learning</u> based single-channel noise reduction (not covered)

Digital Audio Signal Processing

Version 2023-2024

Chapter-2: Single-Channel Noise Reduction